难点
2017
L-PPTD, L^2-PPTD1 :
- 问题:用户端计算量太大
- 解决思路:转移到服务器端(双不共谋服务器模型)
Effective and Efficient TD over Data Streams2 :
- 问题:流数据
- 解决思路:自适应更新权重
TD from Distributed Data3 :
- 问题:大规模的数据分布在多个服务器中
- 解决思路:本地服务器计算一部分,中心再计算
EPTD4 :
- 问题:性能与隐私
- 解决思路:加法同态 + 超递增序列
2018
Non-Interactive PPTD5 :
- 问题:需要在线
- 解决思路:双服务器模型 + GC
Encrypted CATD6 :
- 问题: 具有隐私保护的 CATD
- 解决思路: GC + HE (offline)
2019
Sybil-Resistant TD7 :
- 问题: Sybil Attack
- 解决思路: 根据陀螺仪、加速器判断是否来自同一设备
RTPT8 :
- 问题: 实时性,大规模,用户退出
- 解决思路: ICRH + double masking
EPTD9 :
- 问题:双服务器模型假设不合理
- 解决思路:double masking
RPTD-I & RPTD-II10 :
- 问题: 可验证性
- 解决思路: 哈希链
LPTD-I & LPTD-II11 :
- 问题:可验证性
- 解决思路: 哈希链
PPTDS12 :
- 问题: 错误数据(可验证性)
- 解决思路:
-
C. Miao, L. Su, W. Jiang, Y. Li, and M. Tian, “A lightweight privacy-preserving truth discovery framework for mobile crowd sensing systems,” in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, May 2017, pp. 1–9, doi: 10.1109/INFOCOM.2017.8057114. ↩
-
T. Li, Y. Gu, X. Zhou, Q. Ma, and G. Yu, “An Effective and Efficient Truth Discovery Framework over Data Streams,” 2017, doi: 10.5441/002/edbt.2017.17. ↩
-
Y. Wang, F. Ma, L. Su, and J. Gao, “Discovering Truths from Distributed Data,” in 2017 IEEE International Conference on Data Mining (ICDM), Nov. 2017, pp. 505–514, doi: 10.1109/ICDM.2017.60. ↩
-
G. Xu, H. Li, C. Tan, D. Liu, Y. Dai, and K. Yang, “Achieving efficient and privacy-preserving truth discovery in crowd sensing systems,” Computers & Security, vol. 69, pp. 114–126, Aug. 2017, doi: 10.1016/j.cose.2016.11.014. ↩
-
X. Tang, C. Wang, X. Yuan, and Q. Wang, “Non-Interactive Privacy-Preserving Truth Discovery in Crowd Sensing Applications,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, Apr. 2018, pp. 1988–1996, doi: 10.1109/INFOCOM.2018.8486371. ↩
-
Y. Zheng, H. Duan, and C. Wang, “Learning the Truth Privately and Confidently: Encrypted Confidence-Aware Truth Discovery in Mobile Crowdsensing,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 10, pp. 2475–2489, Oct. 2018, doi: 10.1109/TIFS.2018.2819134. ↩
-
J. Lin, D. Yang, K. Wu, J. Tang, and G. Xue, “A Sybil-Resistant Truth Discovery Framework for Mobile Crowdsensing,” in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Jul. 2019, pp. 871–880, doi: 10.1109/ICDCS.2019.00091. ↩
-
Y. Liu, S. Tang, H.-T. Wu, and X. Zhang, “RTPT: A framework for real-time privacy-preserving truth discovery on crowdsensed data streams,” Computer Networks, vol. 148, pp. 349–360, Jan. 2019, doi: 10.1016/j.comnet.2018.11.018. ↩
-
G. Xu, H. Li, S. Liu, M. Wen, and R. Lu, “Efficient and Privacy-Preserving Truth Discovery in Mobile Crowd Sensing Systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3854–3865, Apr. 2019, doi: 10.1109/TVT.2019.2895834. ↩
-
C. Zhang, L. Zhu, C. Xu, X. Liu, and K. Sharif, “Reliable and Privacy-Preserving Truth Discovery for Mobile Crowdsensing Systems,” IEEE Transactions on Dependable and Secure Computing, pp. 1–1, 2019, doi: 10.1109/TDSC.2019.2919517. ↩
-
C. Zhang, L. Zhu, C. Xu, K. Sharif, X. Du, and M. Guizani, “LPTD: Achieving lightweight and privacy-preserving truth discovery in CIoT,” Future Generation Computer Systems, vol. 90, pp. 175–184, Jan. 2019, doi: 10.1016/j.future.2018.07.064. ↩
-
C. Zhang, L. Zhu, C. Xu, K. Sharif, and X. Liu, “PPTDS: A privacy-preserving truth discovery scheme in crowd sensing systems,” Information Sciences, vol. 484, pp. 183–196, May 2019, doi: 10.1016/j.ins.2019.01.068. ↩