Privacy-preserving Truth Discovery (PPTD)
什么是 PPTD ?
Goal: find truthful information among conflicting data based on each user's weight.
- If a data item provided by a user is closer to the aggregated result, this user will be assigned a higher weight
- If a user holds a higher weight, the data of this user will be counted more in the execution
相关工作
- LLG145,truth discovery 算法
- MJS151,第一个提出解决 data privacy
- XLL192,在个别用户 offline 的情况下保护隐私
- TWY183,使用 GC,假设两个服务器不共谋
- LMS184,使用差分隐私
[XLX20] - V-PATD
Catch you if you deceive me: Verifiable and privacy-aware truth discovery in crowdsensing systems
(ASIA CCS'20, October 5-9, 2020, Taipei, Taiwan)
"The first verifiable and privacy-aware truth discovery protocol in crowdsensing systems."
扩充:增量真值发现
与以往的真值发现方法不同,增量真值发现方法不涉及迭代阶段,并且是从真值更新开始的,然后在观察到新对象时更新每个用户的权重值。
用户集合表示为 U=\{u_1,u_2,\ldots, u_k\},对象集合表示为 O=\{o_1,o_2,\ldots,o_M\},w_m^k 表示为系统内第 k 个用户对于对象 o_m 的权重。
增量真值发现的目标就是计算当前时间戳对象 o_m 的基础真值 x_m。在增量真值发现的过程中,一个时间段内每个用户只感知一个对象,并在下一个时间内重新感知到新对象。
假设当前时间戳用户观测到的对象为 o_m,也就是说之前感知到的对象为 o_1,o_2,\ldots, o_{m-1},那么增量真值发现的过程包含下面两个过程:
- 真值估计:服务器根据上一个时间戳中计算出的权重 \{w_{m-1}^k\}_{k=1}^K 来估计对象的真值:
- 权重估计:服务器根据用户 u_k 的感知数据和真值的差来计算该用户在此刻对于对象 o_m 的权重。
思考:会不会有滞后性?
-
C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao, and K. Ren. Cloud-Enabled Privacy-Preserving Truth Discovery in Crowd Sensing Systems. In Proceedings of the ACM SenSys. ACM, 183–196. 2015. ↩
-
G. Xu, H. Li, S. Liu, M. Wen, and R. Lu. Efficient and Privacy-Preserving Truth Discovery in Mobile Crowd Sensing Systems. IEEE Transactions on Vehicular Technology 68, 4 (2019), 3854–3865. 2019. ↩
-
X. Tang, C. Wang, X. Yuan, and Q. Wang. Non-interactive privacy-preserving truth discovery in crowd sensing applications. In Proceedings of the IEEE INFOCOM. 1988–1996. 2018. ↩
-
Y. Li, C. Miao, L. Su, J. Gao, Q. Li, B. Ding, Z. Qin, and K. Ren. An efficient two-layer mechanism for privacy-preserving truth discovery. In Proceedings of ACM SIGKDD. ACM, 1705–1714. 2018. ↩
-
Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation. In Proceedings of ACM SIGMOD. 1187–1198. 2014. ↩